Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(3): 3605-3620, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207161

RESUMO

Simultaneous study of magnetic and electrocatalytic properties of cobaltites under extreme conditions expands the understanding of physical and chemical processes proceeding in them with the possibility of their further practical application. Therefore, La0.6Sr0.4CoO3 (LSCO) nanopowders were synthesized at different annealing temperatures tann = 850-900 °C, and their multifunctional properties were studied comprehensively. As tann increases, the rhombohedral perovskite structure of the LSCO becomes more single-phase, whereas the average particle size and dispersion grow. Co3+ and Co4+ are the major components. It has been found that LSCO-900 shows two main Curie temperatures, TC1 and TC2, associated with a particle size distribution. As pressure P increases, average ⟨TC1⟩ and ⟨TC2⟩ increase from 253 and 175 K under ambient pressure to 268 and 180 K under P = 0.8 GPa, respectively. The increment of ⟨dTC/dP⟩ for the smaller and bigger particles is sufficiently high and equals 10 and 13 K/GPa, respectively. The magnetocaloric effect in the LSCO-900 nanopowder demonstrates an extremely wide peak δTfwhm > 50 K that can be used as one of the composite components, expanding its working temperature window. Moreover, all LSCO samples showed excellent electrocatalytic performance for the oxygen evolution reaction (OER) process (overpotentials of only 265-285 mV at a current density of 10 mA cm-2) with minimal η10 for LSCO-900. Based on the experimental data, it was concluded that the formation of a dense amorphous layer on the surface of the particles ensures high stability as a catalyst (at least 24 h) during electrolysis in 1 M KOH electrolyte.

2.
Inorg Chem ; 63(2): 1214-1224, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159054

RESUMO

Spin transition (ST) compounds have been extensively studied because of the changes in rich physicochemical properties accompanying the ST process. The study of ST mainly focuses on the temperature-induced spin transition (TIST). To further understand the ST, we explore the pressure response behavior of TIST and pressure-induced spin transition (PIST) of the 2D Hofmann-type ST compounds [Fe(Isoq)2M(CN)4] (Isoq-M) (M = Pt, Pd, Isoq = isoquinoline). The TISTs of both Isoq-Pt and Isoq-Pd compounds exhibit anomalous pressure response, where the transition temperature (T1/2) exhibits a nonlinear pressure dependence and the hysteresis width (ΔT1/2) exhibits a nonmonotonic behavior with pressure, by the synergistic influence of the intermolecular interaction and the distortion of the octahedral coordination environment. And the distortion of the octahedra under critical pressures may be the common behavior of 2D Hofmann-type ST compounds. Moreover, ΔT1/2 is increased compared with that before compression because of the partial irreversibility of structural distortion after decompression. At room temperature, both compounds exhibit completely reversible PIST. Because of the greater change in mechanical properties before and after ST, Isoq-Pt exhibits a more abrupt ST than Isoq-Pd. In addition, it is found that the hydrostatic properties of the pressure transfer medium (PTM) significantly affect the PIST due to their influence on spin-domain formation.

3.
Inorg Chem ; 61(37): 14752-14760, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36074955

RESUMO

Recently, the possibility of exploiting the phenomenon of spin transition (ST) has been intensively investigated; therefore, it is particularly important to study the behavior of ST under various stimuli. Here, the shape and content of the intermediate phase of ST in Hoffmann-like compounds [Fe(Fpz)2M(CN)4] (M = Pt, Pd) under external stimuli are studied. For this purpose, magnetic and Raman spectroscopy studies were carried out. In pressure-induced spin transition (PIST), a mixture of high-spin and low-spin states appears, while in temperature-induced spin transition (TIST), a homogeneous state occurs. The first-order ST induced by pressure has a hysteresis but is not abrupt. However, the temperature-induced spin transition at ambient pressure is hysteretic and abrupt. To investigate this difference, we discuss using a thermodynamic model that considers elastic interactions, showing that the slope of the hysteresis loop is related to the appearance of internal pressure, which is related to the difference in sample compressibility under high-spin and low-spin states.

4.
Chemistry ; 28(56): e202201855, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35779267

RESUMO

Hydrogen energy is an abundant, clean, sustainable and environmentally friendly renewable energy source. Therefore, the production of hydrogen by photocatalytically splitting water on semiconductors has been considered in recent years as a promising and sustainable strategy for converting solar energy into chemical energy to replace conventional energy sources and to solve the growing problem of environmental pollution and the global energy crisis. However, highly efficient solar-driven photocatalytic hydrogen production remains a huge challenge due to the poor visible light response of available photocatalytic materials and the low efficiency of separation and transfer of photogenerated electron-hole pairs. In the present work, organic heterojunction structures based on bacteriochlorophyll (BChl) and chlorophyll (Chl) molecules were introduced and used for solar-driven photocatalytic hydrogen production from water under visible light. Also, noble metal-free photocatalyst was successfully constructed on Ti3 C2 Tx nanosheets by simple successive deposition of Chl and BChl, which was used for the photocatalytic splitting water to hydrogen evolution reaction (HER). The results show that the optimal BChl@Chl@Ti3 C2 Tx composite has a high HER performance with 114 µmol/h/gcat , which is much higher than the BChl@Ti3 C2 Tx and Chl@Ti3 C2 Tx composites.


Assuntos
Bacterioclorofilas , Processos Fotoquímicos , Catálise , Clorofila , Hidrogênio/química , Água/química
5.
Inorg Chem ; 60(21): 16016-16028, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34633179

RESUMO

A comprehensive experimental and theoretical study of both thermal-induced spin transition (TIST) as a function of pressure and pressure-induced spin transition (PIST) at room temperature for the two-dimensional Hofmann-like SCO polymer [Fe(Fpz)2Pt(CN)4] is reported. The TIST studies at different fixed pressures have been carried out by magnetic susceptibility measurements, while PIST studies have been performed by means of powder X-ray diffraction, Raman, and visible spectroscopies. A combination of the theory of elastic interactions and numerical Monte Carlo simulations has been used for the analysis of the cooperative interactions in TIST and PIST studies. A complete (T, P) phase diagram for the compound [Fe(Fpz)2Pt(CN)4] has been constructed. The critical temperature of the spin transition follows a lineal dependence with pressure, meanwhile the hysteresis width shows a nonmonotonic behavior contrary to theoretical predictions. The analysis shows the exceptional role of the total entropy and phonon contribution in setting the temperature of the spin transition and the width of the hysteresis. The anomalous behavior of the thermal hysteresis width under pressure in [Fe(Fpz)2Pt(CN)4] is a direct consequence of a local distortion of the octahedral geometry of the Fe(II) centers for pressures higher than 0.4 GPa. Interestingly, there is not a coexistence of the high- and low-spin (HS and LS, respectively) phases in TIST experiments, while in PIST experiments, the coexistence of the HS and LS phases in the metastable region of the phase transition induced by pressure is observed for a first time in a first-order gradual spin transition with hysteresis.

6.
Inorg Chem ; 59(15): 10548-10556, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32657582

RESUMO

Two types of experiments conducted to investigate the effect of pressure on the spin crossover (SCO) properties of the 2D Fe(II) coordination polymer formulated {Fe[bipy(ttr)2]}n are reported, namely, (1) magnetic measurements performed at variable temperature and at fixed pressure and (2) visible spectroscopy at variable pressure and fixed temperature. The magnetic experiments carried out under a hydrostatic pressure constraint of 0.04, 0.08, and 0.8 GPa reveal a two-step spin transition behavior. The characteristic critical temperatures of the spin transition are shifted upward in temperature as pressure increases. The slope of the straight-line of the Tc vs P plot, dTc/dP, is 775 K/GPa and 300 K/GPa, for the high temperature and the low temperature steps, respectively. These values are remarkably large and denote the extreme sensitivity of the material to the application of pressure. Indeed, the visible spectroscopic measurements performed at 293 K show that a complete spin transition is induced at pressures as low as 0.4 GPa. Moreover, the pressure-induced spin transition is reversible and shows an asymmetric hysteresis. An analysis of the cooperative interactions of the thermal- and pressure-induced spin transition in the framework of the model of elastic interactions reveals that the elastic energy of the lattice as well as the interaction parameter between the SCO centers change during the course of the spin transition. Consequently, the character of the spin transition varies from abrupt for the high temperature step to continuous for the low temperature step.

7.
J Phys Chem B ; 122(26): 6846-6853, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29883125

RESUMO

The magnetic bimetallic molecular-based compounds attract considerable attention because of their unique characteristics which are very different from those of traditional magnets. We demonstrate the effects of charge transfer as well as spin and magnetic order changes induced by high hydrostatic pressure applied to the two bimetallic multifunctional Prussian blue analogues, K0.1Co4[Fe(CN)6]2.7·18H2O and K0.5Mn3[Fe(CN)6]2.14·6H2O. Two opposite directions of change in their properties under pressure are revealed: (i) the magnetization reduction and magnetic order disappearing for the K0.1Co4[Fe(CN)6]2.7·18H2O compound and (ii) an increase of the magnetization and change of the sign of exchange coupling for the K0.5Mn3[Fe(CN)6]2.14·6H2O compound. It is a first observation of both the magnetic moment increase and transformation from ferrimagnetic order to ferromagnetic order that appear under pressure in Prussian blue analogues. The latter is explained by the charge transfer between the metallic ions resulting in the corresponding spin transitions.

8.
Inorg Chem ; 57(14): 8458-8464, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29947511

RESUMO

Pressure effects on the spin transition of the three-dimensional (3D) porous coordination polymer {Fe(pz)[Pt(CN)4]} have been investigated in the interval 105 Pa-1.0 GPa through variable-temperature (10-320 K) magnetic susceptibility measurements and spectroscopic studies in the visible region at room temperature. These studies have disclosed a different behavior of the compound under pressure. In the magnetic experiments, a temperature independent paramagnetic behavior has been observed under 0.4 GPa. In contrast, at room temperature and at 0.8 GPa, a complete HS-to-LS transition has been evidenced. The differences in the magnetic behavior are strongly related with the porous structure of the compound and its capability to adsorb the oil used as pressure transmission media in the magnetic experiments.

9.
J Am Chem Soc ; 130(46): 15519-32, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-18937456

RESUMO

The effect of applied pressure on the magnetic properties of the Prussian blue analogue K0.4Fe4[Cr(CN)6]2.8 x 16 H2O (1) has been analyzed by dc and ac magnetic susceptibility measurements. Under ambient conditions, 1 orders ferromagnetically at a critical temperature (T(C)) of 18.5 K. Under application of pressure in the 0-1200 MPa range, the magnetization of the material decreases and its critical temperature shifts to lower temperatures, reaching T(C) = 7.5 K at 1200 MPa. Pressure-dependent Raman and Mossbauer spectroscopy measurements show that this striking behavior is due to the isomerization of some Cr(III)-C[triple bond]N-Fe(II) linkages to the Cr(III)-N[triple bond]C-Fe(II) form. As a result, the ligand field around the iron(II) centers increases, and the diamagnetic low-spin state is populated. As the number of diamagnetic centers in the cubic lattice increases, the net magnetization and critical temperature of the material decrease considerably. The phenomenon is reversible: releasing the pressure restores the magnetic properties of the original material. However, we have found that under more severe pressure conditions, a metastable sample containing 22% Cr(III)-N[triple bond]C-Fe(II) linkages can be obtained. X-ray absorption spectroscopy and magnetic circular dichroism of this metastable sample confirm the linkage isomerization process.


Assuntos
Compostos de Cromo/química , Cianetos/química , Compostos de Ferro/química , Magnetismo , Pressão , Água/química , Raios X , Cristalização , Isomerismo , Análise Espectral , Temperatura , Difração de Raios X
10.
J Am Chem Soc ; 127(13): 4580-1, 2005 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-15796516

RESUMO

A pressure-induced linkage isomerization of the cyanide anion has been observed in single crystals of a chromium(III)-iron(II) Prussian blue analogue of formula K0.4Fe4[Cr(CN)6]2.8 square1.2.16H2O (1). Upon application of pressure in the 0-1200 MPa range, the cyanide ligand rotates and becomes C-bonded to the iron(II) cations, leading to a stabilization of their diamagnetic low-spin states. The result is a decrease of magnetization and magnetic ordering temperatures from TC = 19 K at ambient pressure to 13 K at 1200 MPa. The initial magnetic properties can be restored on pressure release. The reversible movement of cyanide in the solid state can be exploited as a switch of the magnetic interaction at the molecular level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...